首页> 外文OA文献 >Quantum integrable systems and elliptic solutions of classical discrete nonlinear equations
【2h】

Quantum integrable systems and elliptic solutions of classical discrete nonlinear equations

机译:经典离散非线性方程的量子可积系统和椭圆解

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Functional relation for commuting quantum transfer matrices of quantum integrable models is identified with classical Hirota's bilinear difference equation. This equation is equivalent to the completely discretized classical 2D Toda lattice with open boundaries. The standard objects of quantum integrable models are identified with elements of classical nonlinear integrable difference equation. In particular, elliptic solutions of Hirota's equation give complete set of eigenvalues of the quantum transfer matrices. Eigenvalues of Baxter's Q-operator are solutions to the auxiliary linear problems for classical Hirota's equation. The elliptic solutions relevant to Bethe ansatz are studied. The nested Bethe ansatz equations for A_{k-1}-type models appear as discrete time equations of motions for zeros of classical \tau-functions and Baker-Akhiezer functions. Determinant representations of the general solution to bilinear discrete Hirota's equation and a new determinant formula for eigenvalues of the quantum transfer matrices are obtained.
机译:用经典的Hirota双线性差分方程确定了可交换量子可积模型的量子传递矩阵的函数关系。该方程式等效于完全离散的具有开放边界的经典2D Toda晶格。量子可积模型的标准对象由经典非线性可积差分方程的元素确定。特别地,Hirota方程的椭圆解给出了量子转移矩阵的完整特征值集。百特Q算子的特征值是经典Hirota方程的辅助线性问题的解。研究了与Bethe ansatz相关的椭圆解。 A_ {k-1}型模型的嵌套Bethe ansatz方程作为经典\ tau函数和Baker-Akhiezer函数的零点运动的离散时间方程出现。得到了双线性离散Hirota方程的一般解的行列式表示以及量子转移矩阵特征值的新行列式公式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号